

Auftraggeber:

Arbeitsgemeinschaft Niedersächsische Seehäfen, c/o Oldenburgische Industrie- und Handelskammer, Industrie- und Handelskammer Stade für den Elbe-Weser-Raum, Industrie- und Handelskammer für Ostfriesland und Papenburg, Niedersachsen Ports GmbH & Co. KG

und die Seehafenstandorte:

Brake

Cuxhaven

Emden

Nordenham Wilhelmshaven Voranalyse Windenergieausbau und Flächensituation

POTENZIALE DER WINDENERGIE FÜR DIE NIEDERSÄCHSISCHEN SEEHÄFEN

UNTERSUCHTE FRAGESTELLUNGEN IN DER VORANALYSE

- Welche Rolle spielen H\u00e4fen im Zuge der Energiewende?
- Welche Voraussetzungen bieten die niedersächsischen Seehäfen?
- Wie stellt sich die zukünftige Nachfrage vor dem Hintergrund der Windenergie-Ausbauziele dar?
- Was bedeuten die wachsenden Größendimensionen der Windenergieanlagen für die Häfen?
- Welche Flächen und Flächenpotenziale haben die niedersächsischen Seehäfen?

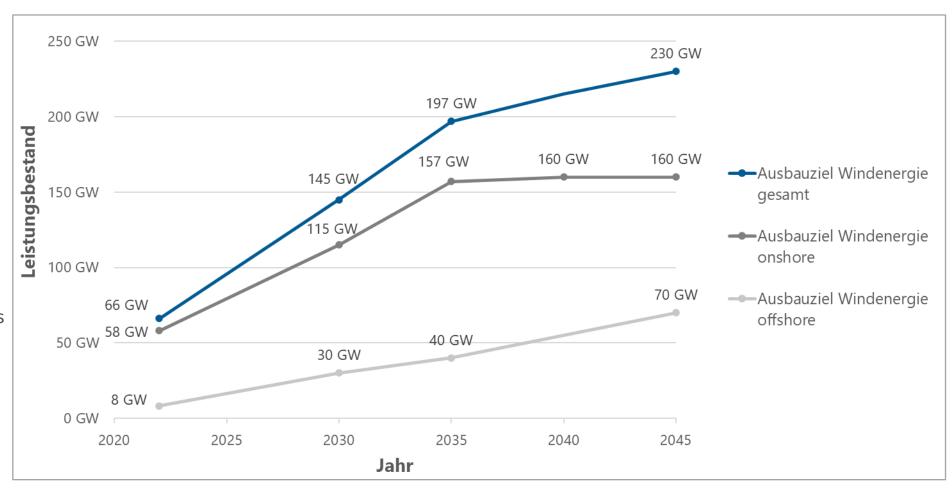
Karte der niedersächsischen Seehäfen inkl. Funktion

DIE NIEDERSÄCHSISCHEN SEEHÄFEN ERFÜLLEN WICHTIGE FUNKTIONEN FÜR DIE WINDENERGIEBRANCHE

Die Häfen fungieren bereits heute als

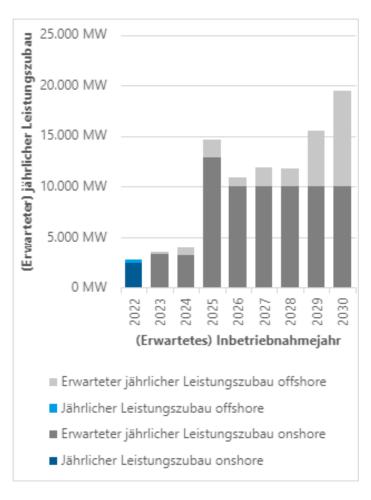
- Hauptumschlagsbasis
- Basishafen
- Lagerfläche
- Produktionshafen
- Installationshafen
- Servicehafen

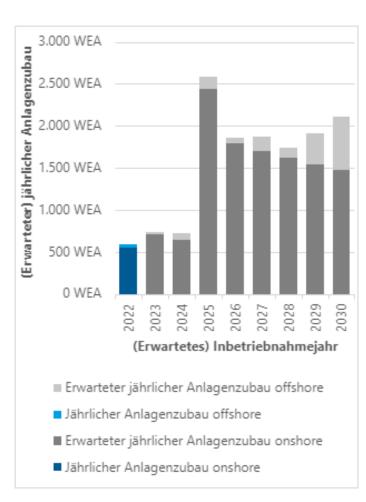
und sind ein wichtiges Glied in der Wertschöpfungskette der Windenergiebranche.


DIE NATIONALEN UND EUROPÄISCHEN AUSBAUZIELE FÜR DIE WINDENERGIE SIND AMBITIONIERT

NATIONALE ZIELE BIS 2030:

Die Ausbauziele sehen vor, dass die installierte Leistung der Windenergie an Land bereits bis 2030 im Vergleich zu 2022 etwa **verdoppelt** (115 GW) und auf See fast **vervierfacht** (30 GW) werden soll.


EUROPÄISCHE ZIELE BIS 2030:


Der Anteil von Erneuerbaren Energien soll auf 45% steigen, dies entspricht beinahe einer **Verdopplung** des aktuellen Stands. Zur Erreichung wären 31 GW jährlicher Zubau von Windenergie notwendig (zum Vergleich: In 2022 betrug der Zubau in der EU 16 GW).

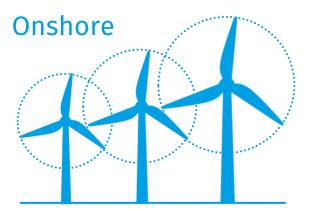
DER LEISTUNGS- UND ANLAGENZUBAU WIRD RASANT STEIGEN

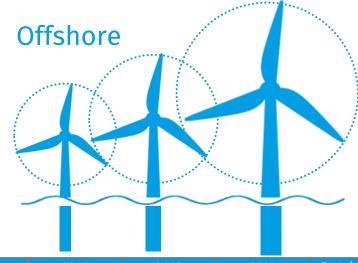
HOHE ZUBAURATEN BEREITS AB DEM JAHR 2025

Ab 2025 wird ein
Anlagenzubau von etwa
2.000 On- und Offshore
Windenergieanlagen pro
Jahr erwartet. Dies
entspricht etwa einer
Verdreifachung des
aktuellen jährlichen
Anlagenzubaus.

Implikationen für die Hafenwirtschaft auf Basis der Ausbauziele

ERSTE SCHLUSSFOLGERUNGEN: HOHE AUSBAUZIELE ERFORDERN HOHE ZUBAURATEN – BEREITS AB 2025


- Hohe Zubauraten ab 2025 im Vergleich zu heute dreimal so viele Anlagen pro Jahr
- Keine größere Rotorblattproduktion mehr in Deutschland nahezu alle Rotorblätter müssen importiert werden
- Möglichkeit der Entwicklung neuer Produktionsstandorte Häfen mit Flächenangeboten können entsprechende **Neuansiedlungen** nach sich ziehen
- EU und Nachbarländer haben große Ziele **Häfen der Nachbarländer könnten mit lokalen Projekten stärker ausgelastet sein**
- Service und Wartungsaufwand offshore wird steigen und dies dauerhaft
- Rückbau offshore ab spätestens 2030er Jahren zusätzliche Nachfrage erwartbar
- Offshore Windenergieprojekte benötigen größeren Vorlauf in den Häfen Flächen müssen
 1-2 Jahre vor Fertigstellung genutzt werden können



(Erwartete) Entwicklung Größendimensionen Onshore- und Offshore-Windenergieanlagen

GRÖßENDIMENSIONEN WACHSEN MIT JEDER NEUEN

ANLAGENGENERATION

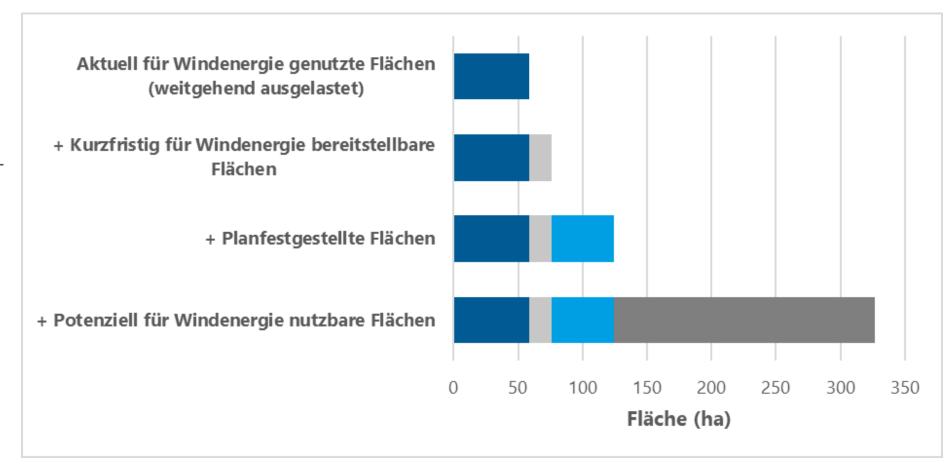
	2015	2022	E-175 EP5	Entwicklung	2015	2022	2025	Entwicklung
	(Ø WEA mit IBN in 2015)	(Ø WEA mit IBN in 2022)	(ange- kündigt für 2024)		(Meerwind Süd Ost, SWT 3.6-120)	(Kaskasi, SG 8.0-167 DD Flex)	(He Dreiht, V236-15)	
Nennleistung	2,7 MW	4,4 MW	6 MW	+ 122%	3,6 MW	9 MW	15 MW	+ 317%
Rotordurchmesser	105 m	137 m	175 m	+ 67%	120 m	167 m	236 m	+ 97%
Nabenhöhe	123 m	138 m	163 m	+ 33%	89 m	108 m	142 m	+ 60%
Gesamthöhe	176 m	206 m	250 m	+ 42%	149 m	191 m	260 m	+ 75%
Fundament					Monopile	Monopile	Monopile	
Durchmesser					5,5 m	6,5 m	9,2 m	+67%
Gewicht					700 t	660 t	1.300 t	+ 86%

Implikationen für die Hafenwirtschaft auf Basis der Technologieentwicklung

ERSTE SCHLUSSFOLGERUNGEN: AUCH WACHSENDE GRÖßEN-DIMENSIONEN FÜHREN ZU WACHSENDEM FLÄCHENBEDARF

- Flächenbedarf der einzelnen Großkomponenten steigt mit jeder neuen Anlagengeneration
- Anforderungen an Schwerlastfähigkeit der Flächen steigen
- Für Ansprüche an Flexibilität muss entsprechende Rangier- und Vormontagefläche bereitgestellt werden
- Hafeninfra- und Hafensuprastruktur in den Häfen und deren Zufahrten muss den Größendimensionen der Windenergieanlagenkomponenten hinsichtlich Gewicht und Höhe/Größe gerecht werden
- Gesteigerte Dimensionen wirken sich auch auf zukünftig verwendete
 Schiffstypen und/oder die Anzahl an Schiffsbewegungen aus

Flächenkulisse für Windenergie in den Seehäfen Emden, Cuxhaven, Brake, Wilhelmshaven und Nordenham


IN DEN NIEDERSÄCHSISCHEN SEEHÄFEN SIND FLÄCHENPOTENZIALE VORHANDEN

Aktuell werden an den fünf Hafenstandorten ca. **58 ha** für Windenergie genutzt.

Flächen im Umfang von ca. **18 ha** könnten kurzfristig zusätzlich bereitgestellt werden.

Weitere ca. **48 ha** sind bereits planfestgestellt und könnten zeitnah für Windenergie entwickelt werden.

Weitere ca. 202 ha könnten perspektivisch für Windenergie entwickelt werden.

Zusammenfassung

DIE NIEDERSÄCHSISCHEN HÄFEN ALS BAUSTEIN FÜR DEN ERFOLGREICHEN AUSBAU DER WINDENERGIE

- Faktoren f
 ür wachsende Bedarfe
 - Hohe jährliche Zubauraten on- und offshore bereits ab 2025
 - Wachsenden Dimensionen der Windenergieanlagenkomponenten
 - Vermehrte Aufwände in den Bereichen Betrieb, Wartung, Reparatur und Inspektion
 - Zunehmender Rückbau älterer Windenergieanlagen
 - Paralleler Ausbau des Offshore-Übertragungsnetzes
 - Zusätzliche innovative Technologien mit weiteren Anforderungen
- Für Windenergie genutzte Hafenflächen sind weitgehend ausgelastet
- Potenziale sind vorhanden, wenn Erweiterungs- und Entwicklungsflächen für die Windenergie erschlossen werden
- Wegen langer Planungs-, Genehmigungs- und Umsetzungszeiträume sind zeitnah Schritte einzuleiten
- Betrachtung von Themen wie Hafeninfrastruktur und -suprastruktur, Zufahrten, Schiffstechnologien, Produktionsstandorten im nächsten Schritt

DANKE.

Dr.-Ing. Dennis Kruse

Dennis.Kruse@windguard.de

Deutsche WindGuard GmbH Oldenburger Straße 65 A 26316 Varel

http://www.windguard.de/

